活菌药物的量效关系

发布时间:2022-09-23

活菌药物的量效关系


常秀娟、王薇、杜瑶、刘洋洋、李平

1 活菌产品(益生菌)的机制和药代特性与常规化药等有所不同
活菌药物的量效关系与小分子药物存在明显的差异。
小分子药物发挥药理学效应的基础一般是通过血液到达靶器官,在一定剂量范围内,药物的效应与靶部位的浓度成正相关,从而呈现较好的量效关系,而这个剂量范围一般会在2-5倍,不会跨越2个数量级以上。
活菌药物口服后不入血,发挥药理学效应的基础一般是通过与肠道的接触以及定植,并且活菌在消化道可能会死亡(如经胃酸)、繁殖及代谢,导致肠道内的活菌数量与实际给予的活菌数量不同。其后在一定剂量范围内通过影响肠道黏膜的免疫调节细胞(如树突细胞、巨噬细胞、NK细胞等)影响固有免疫系统[1-4],介导调节剂(如细胞因子、趋化因子)的分泌效应发挥免疫效应[5-6],或与体内多种肠道菌群发生协同或促进作用[7],或通过一些代谢成分(如短链脂肪酸、膜蛋白、外膜囊泡等)发挥作用[8-9]。由于这些特性,它的量效关系通常在较宽的数量级范围(如10倍~1000倍)进行考察。
2 以膳食补充剂出现的益生菌产品,剂量多是一个范围
国际益生菌和益生元科学协会(ISAPP)益生菌应用指南[10]中提出:目前多数研究提出益生菌的推荐量为108~1011CFU/d。世界胃肠病学组织益生菌与益生元指南(World Gastroenterology Organization Global Guidelines• Probiotics and Prebiotics,2017)提出[11]:添加益生菌的产品所需剂量根据菌株和产品而有很大差异,大部分菌株的推荐摄入量是108~1011CFU/d,少数菌株推荐摄入量106~107 CFU/d。其他指南也有类似看法。
3 关于活菌计数与剂量控制
鉴于微生物计数的方法学偏差较大,而活菌数(稳定性)受储运、配制等的影响较大,所以对于一个研究系统中,对目的菌的活菌计数进行系统的方法学研究形成SOP,对稳定性进行了系统的考察,是评估量效关系的基础。
4 活菌产品的量效关系研究
使用检索词“probiotics+high dose+mice或human”检索的文献中,采用2个及以上剂量开展的药效研究(包括动物与人体)共89个,对其进行汇总和分析,可以看到:
(1)其中57篇研究只报道了2个剂量组研究,由于2个剂量的研究数据不能反映出量效关系的整体趋势,在此不做分析。
(2)实际上,3个及以上剂量组的研究结果更值得关注(上述89个里有32篇),存在着几种类型:常规的量效关系型、倒U型及其他。(见表1)。值得注意的是,即使是这里的剂量依赖性,也存在低、中剂量间差异不明显。
从药效学研究本身来说,上述几种剂量关系类型都是客观存在并合理的。研究逻辑本身,是先进行大范围的剂量探索,再选择合适的剂量范围进行更细致的量效研究。前述的大部分文献报道(2个剂量组研究),往往是将更小范围的量效结果展示出来。
参考文献
[1] Mohamad Nor, M.H., et al., The Effect of Probiotics (MCP((R)) BCMC((R)) Strains) on Hepatic Steatosis, Small Intestinal Mucosal Immune Function, and Intestinal Barrier in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients, 2021. 13(9): p. 3192.
[2] Castro, M.S., et al., Probiotic activity of Enterococcus faecalis CECT7121: effects on mucosal immunity and intestinal epithelial cells. J Appl Microbiol, 2016. 121(4): p. 1117-29.
[3] Zhao, Q., et al., Clostridium butyricum alleviates intestinal low-grade inflammation in TNBS-induced irritable bowel syndrome in mice by regulating functional status of lamina propria dendritic cells. World J Gastroenterol, 2019. 25(36): p. 5469-5482.
[4] Dongarra, M.L., et al., Mucosal immunology and probiotics. Curr Allergy Asthma Rep, 2013. 13(1): p. 19-26.
[5] Routy B, Le Chatelier E, Derosa L,, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors [J]. Science, 2018, 359(6371): p. 91-7.
[6] GARRIS C S, ARLAUCKAS S P, KOHLER R H, et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12 [J]. Immunity, 2018, 49(6): 1148-61. e7.
[7] Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients [J]. Science, 2018, 359(6371): p. 104-8.
[8] Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut 1994; 35 (1 Suppl): p. S35–S38.
[9] Lili Chen, et al. Propionate and Butyrate Produced by Gut Microbiota after Probiotic Supplementation Attenuate Lung Metastasis of Melanoma Cells in Mice. Molecular Nutrition & Food Research, 2021, 65(15): p. e2100096.
[10] World Gastroenterology Organisation. World Gastroenterology Organisation Global Guidelines: Probiotics and prebiotics [EB/OL]. (2017-02) [2020-04-10].
[11] Codex Alimentarius Commission. Discussion Paper on Harmonized Probiotic Guidelines for Use in Foods and Dietary Supplements[EB/OL].(2018-11)[2022-06-10].
[12] Lou, P., et al., Dose-Dependent Relationship between Protection of Thioacetamide-Induced Acute Liver Injury and Hyperammonemia and Concentration of Lactobacillus salivarius Li01 in Mice. Microbiol Spectr, 2021. 9(3): p. e0184721.
[13] Udayappan, S., et al., Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbiomes, 2016. 2: p. 16009.
[14] Toukam, L.L., et al., In vivo antimalarial activity of a probiotic bacterium Lactobacillus sakei isolated from traditionally fermented milk in BALB/c mice infected with Plasmodium berghei ANKA. J Ethnopharmacol, 2021. 280: p. 114448.
[15] Rousseaux, C., et al., Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med, 2007. 13(1): p. 35-7.
[16] Yang, Z.Q., et al., Alleviating effects of Lactobacillus strains on pathogenic Vibrio parahaemolyticus-induced intestinal fluid accumulation in the mouse model. FEMS Microbiol Lett, 2013. 339(1): p. 30-8.
[17] Jeong, D.Y., et al., Pediococcus acidilactici intake decreases the clinical severity of atopic dermatitis along with increasing mucin production and improving the gut microbiome in Nc/Nga mice. Biomed Pharmacother, 2020. 129: p. 110488.
[18] Moratalla, A., et al., Bifidobacterium pseudocatenulatum CECT7765 promotes a TLR2-dependent anti-inflammatory response in intestinal lymphocytes from mice with cirrhosis. Eur J Nutr, 2016. 55(1): p. 197-206.
[19] Xue, L., et al., Lactobacillus acidophilus LA85 ameliorates cyclophosphamide-induced immunosuppression by modulating Notch and TLR4/NF-kappaB signal pathways and remodeling the gut microbiota. Food Funct, 2022. 13(15): p. 8107-8118.
[20] Kong, Q., et al., Oral administration of Clostridium butyricum for modulating gastrointestinal microflora in mice. Curr Microbiol, 2011. 62(2): p. 512-7.
[21] Liu, J., et al., Neuroprotective Effects of Clostridium butyricum against Vascular Dementia in Mice via Metabolic Butyrate. Biomed Res Int, 2015. 2015: p. 412946.
[22] Ren, J., et al., Immunomodulatory effect of Bifidobacterium breve on experimental allergic rhinitis in BALB/c mice. Exp Ther Med, 2018. 16(5): p. 3996-4004.
[23] Kou, X., et al., A tolerant lactic acid bacteria, Lactobacillus paracasei, and its immunoregulatory function. Can J Microbiol, 2014. 60(11): p. 729-36.
[24] Rahmati, H., et al., Probiotic supplementation attenuates hippocampus injury and spatial learning and memory impairments in a cerebral hypoperfusion mouse model. Mol Biol Rep, 2019. 46(5): p. 4985-4995.
[25] Jan, R.L., et al., Lactobacillus gasseri suppresses Th17 pro-inflammatory response and attenuates allergen-induced airway inflammation in a mouse model of allergic asthma. Br J Nutr, 2012. 108(1): p. 130-9.
[26] Bao, W., et al., Regulatory Effect of Lactiplantibacillus plantarum 2-33 on Intestinal Microbiota of Mice With Antibiotic-Associated Diarrhea. Front Nutr, 2022. 9: p. 921875.
[27] Tsai, Y.S., et al., Lactobacillus rhamnosus GKLC1 ameliorates cisplatin-induced chronic nephrotoxicity by inhibiting cell inflammation and apoptosis. Biomed Pharmacother, 2022. 147: p. 112701.
[28] Ji, Y., et al., Dose-dependent and strain-dependent anti-obesity effects of Lactobacillus sakei in a diet induced obese murine model. PeerJ, 2019. 7: p. e6651.
[29] Dang, F., et al., Administration of Lactobacillus paracasei ameliorates type 2 diabetes in mice. Food Funct, 2018. 9(7): p. 3630-3639.
[30] Meng, Y., et al., Lactobacillus plantarum KLDS1.0318 Ameliorates Impaired Intestinal Immunity and Metabolic Disorders in Cyclophosphamide-Treated Mice. Front Microbiol, 2019. 10: p. 731.
[31] Kim, J.W., et al., Effect of Weissella cibaria on the reduction of periodontal tissue destruction in mice. J Periodontol, 2020. 91(10): p. 1367-1374.
[32] Xie, J., et al., Lactobacillus plantarum NCU116 Attenuates Cyclophosphamide-Induced Immunosuppression and Regulates Th17/Treg Cell Immune Responses in Mice. J Agric Food Chem, 2016. 64(6): p. 1291-7.
[33] Liu, Q., et al., Lactobacillus plantarum BSGP201683 Isolated from Giant Panda Feces Attenuated Inflammation and Improved Gut Microflora in Mice Challenged with Enterotoxigenic Escherichia coli. Front Microbiol, 2017. 8: p. 1885.
[34] Pan, T., et al., Oral administration of Lactobacillus paracasei alleviates clinical symptoms of colitis induced by dextran sulphate sodium salt in BALB/c mice. Benef Microbes, 2014. 5(3): p. 315-22.
[35] Huang, Y., et al., The effect of Lactobacillus fermentum DALI02 in reducing the oxidative stress and inflammatory response induced by high-fat diet of rats. RSC Adv, 2020. 10(57): p. 34396-34402.
[36] Whorwell, P.J., et al., Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol, 2006. 101(7): p. 1581-90.
[37] Matthes, H., et al., Clinical trial: probiotic treatment of acute distal ulcerative colitis with rectally administered Escherichia coli Nissle 1917 (EcN). BMC Complement Altern Med, 2010. 10: p. 13.
[38] Hanifi, A., et al., Evaluation of Bacillus subtilis R0179 on gastrointestinal viability and general wellness: a randomised, double-blind, placebo-controlled trial in healthy adults. Benef Microbes, 2015. 6(1): p. 19-27.
[39] Larsen, C.N., et al., Dose-response study of probiotic bacteria Bifidobacterium animalis subsp lactis BB-12 and Lactobacillus paracasei subsp paracasei CRL-341 in healthy young adults. Eur J Clin Nutr, 2006. 60(11): p. 1284-93.
[40] Christensen, H.R., et al., Immunomodulating potential of supplementation with probiotics: a dose-response study in healthy young adults. FEMS Immunol Med Microbiol, 2006. 47(3): p. 380-90.
[41] Maldonado-Lobón JA, Díaz-López MA, Carputo R, et al., Olivares Martín M. Lactobacillus fermentum CECT 5716 Reduces Staphylococcus Load in the Breastmilk of Lactating Mothers Suffering Breast Pain: A Randomized Controlled Trial. Breastfeed Med. 2015 Nov;10(9):425-32.
[42] Ahmed, M., et al., Impact of consumption of different levels of Bifidobacterium lactis HN019 on the intestinal microflora of elderly human subjects. J Nutr Health Aging, 2007. 11(1): p. 26-31.
[43] Kim, J.Y., et al., Effect of Lactobacillus gasseri BNR17 on irritable bowel syndrome: a randomized, double-blind, placebo-controlled, dose-finding trial. Food Sci Biotechnol, 2018. 27(3): p. 853-857.